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ABSTRACT 
Tilings have been studied in mathematics since ancient times, traditionally within 

the framework of Euclidean geometry. In recent years, growing interest has emerged in 
non-Euclidean tilings, particularly those in spherical and hyperbolic geometry, where 
regular convex polygons generate highly structured and visually striking patterns. 
Beyond their theoretical importance, hyperbolic tilings offer meaningful applications in 
areas such as artistic design, architectural pattern formation, mathematical education, and 
computer-based visualization, where symmetry and color play a central role. This study 
investigates colorings induced by low-index subgroups of the hyperbolic triangle group 
*732. Specifically, it constructs right coset colorings of the group, identifies the structural 
components of its low-index subgroups, and establishes subgroup properties in relation 
to their induced colorings. Computational tools were employed using GAP (Groups, 
Algorithms, and Programming) to generate low-index subgroups of the triangle group 
*732 and to produce the corresponding right coset colorings of the hyperbolic plane. The 
results show that tiling the entire hyperbolic plane can be achieved by appropriately 
joining the vertices of a tiling’s fundamental region to form a single, complete rotation. 
These findings enhance the understanding of symmetry, subgroup structure, and color 
organization in hyperbolic geometry. Moreover, the resulting colored tilings provide a 
mathematical foundation for creating complex visual patterns that may be adapted for 
architectural surfaces, decorative designs, and interactive educational materials. The 
study demonstrates how abstract group-theoretic concepts can be translated into visually 
meaningful representations, thereby bridging pure mathematics with applied and creative 
disciplines. Future research is recommended to explore induced colorings of low-index 
subgroups of other hyperbolic triangle groups and related hyperbolic structures. 
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Introduction 

Across cultures and historical periods, 
mathematics and art have been deeply 
connected through the pursuit of pattern, 
symmetry, and structure. From ornamental 
designs and mosaics to architectural 
decorations, mathematical principles have long 

guided aesthetic expression.  The formal 
mathematical study of color symmetry 
emerged in the early 20th century and 
was significantly advanced by 
Shubnikov’s theory of antisymmetry, 
later extended by Belov and 
collaborators to multicolor symmetry 
systems. These developments, together 
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with the visual impact of Escher’s tessellations, 
established color symmetry as an important 
area of mathematical inquiry (Amidror, 2009; 
Washburn & Crowe, 2004). Much of the 
existing literature on color symmetry and 
tilings has focused on Euclidean geometry, 
where the classification of symmetry groups 
and colorings is well understood. 
However, non-Euclidean geometries, 
particularly hyperbolic geometry, possess 
fundamentally richer symmetry structures due 
to their negative curvature. Hyperbolic tilings 
admit infinitely many symmetry types and 
allow regular polygons to meet in 
configurations impossible in the Euclidean 
plane (Coxeter, 1957). Despite this potential, 
systematic studies of induced colorings arising 
from subgroup structures in hyperbolic triangle 
groups remain limited, especially those that 
explicitly connect algebraic constructions with 
geometric and visual outcomes. This gap 
restricts both theoretical progress and the 
translation of hyperbolic symmetry into 
applied domains. Among hyperbolic symmetry 
groups, the hyperbolic triangle 
group 732 plays a central role. It is generated 
by reflections in the sides of a triangle with 
angles π/7, π/3, and π/2, making it one of the 
simplest yet most symmetric hyperbolic 
triangle groups. Its low-index subgroups yield 
a wide variety of nontrivial coset partitions, 
making *732 particularly suitable for studying 
induced colorings that reflect both algebraic 
structure and geometric regularity (Magnus, 
Karrass, & Solitar, 1976; Coxeter & Moser, 
1980). Despite its importance, detailed 
investigations of colorings induced by low-
index subgroups of 732 are scarce, 
highlighting the need for focused research in 
this area. This study addresses this gap by 
investigating colorings induced by low-index 
subgroups of the hyperbolic triangle 
group 732. Specifically, it aims to obtain right 
coset colorings of *732, identify the structural 
components of its low-index subgroups, and 
establish subgroup properties in relation to 

their induced colorings using 
computational methods. Hyperbolic 
colorings provide new frameworks 
for textile and surface design, where 
repeating patterns with controlled color 
symmetry can inspire innovative fabric 
motifs and decorative materials. 
In education, visually rich hyperbolic 
colorings serve as powerful tools for 
teaching abstract concepts in geometry, 
group theory, and symmetry, making 
advanced mathematics more accessible 
through visualization. By bridging 
algebraic theory, geometry, and real-
world applications, this research 
contributes to both mathematical 
understanding and interdisciplinary 
innovation. 

 
Methods 

This study employed a structural 
investigation on colorings induced by 
low-index subgroups of hyperbolic 
triangle group *732. The methodology 
involved two main stages: group 
generation and hyperbolic coloring 
construction. First, the hyperbolic 
triangle group *732 was defined and 
implemented using the software GAP 
(Groups, Algorithms, and 
Programming). GAP allowed the group 
to be represented algebraically with its 
standard generators and relations. Using 
GAP, the low-index subgroups of *732 
were systematically generated, providing 
the algebraic structures necessary to 
produce coset partitions. Next, the study 
constructed right coset colorings 
corresponding to these low-index 
subgroups. The method involved 
applying the 3n method to assign colors 
to tiles in the hyperbolic plane based on 
the subgroup generators. Each right coset 
of a subgroup was associated with a 
unique color, so that all tiles 
corresponding to elements in the same 
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coset shared the same color. This produced a 
subgroup-induced coloring of the hyperbolic 
tiling, ensuring that the coloring respected the 
symmetry properties of the subgroup. Finally, 
the properties of the low-index subgroups, such 
as index, normality, and generator structure, 
were analyzed in relation to their induced 
colorings. This approach allowed the study to 
link the algebraic properties of subgroups with 
the visual and geometric patterns in hyperbolic 
tilings, demonstrating how group-theoretic 
concepts can be translated into tangible color 
structures in the hyperbolic plane. 

 
Results and Discussion 

Subgroup Structure of *732 
The 𝐻! or the hyperbolic plane is a 

unique and fascinating model of non-Euclidean 
geometry where the parallel postulate of 
Euclidean geometry does not hold. Unlike the 
familiar flat surfaces, the hyperbolic plane has 
a constant negative curvature, creating a 
surface that appears saddle-shaped. This 
curvature gives rise to intriguing properties and 
behaviors, such as the fact that the sum of 
angles in a hyperbolic triangle is always less 
than 1800, and parallel lines can diverge away 
from each other. Various models, like the 
Poincaré disk and the upper half-plane model, 
help visualize and study the properties of the 
hyperbolic plane, making it an essential 
concept in advanced mathematics, particularly 
in the fields of geometry, topology, and 
theoretical physics. Understanding the 
hyperbolic plane provides deep insights into 
the structure of space, offering a broader 
perspective beyond the conventional Euclidean 
framework. A computer program, GAP 
(Group, Algorithms and Programming), was 
used to list generators of the subgroups of the 
group *732 with an index less than or equal to 
24. The triangles that represent the elements of 
the group's subgroups are colored using 3n 
Precise Coloring as shown in Figures 1 to 9. 
The components of the low-index subgroups of 

the hyperbolic triangle group *732 were 
identified using right coset coloring. 
Using Conway notations, the subgroups 
were categorized based on their 
symmetry structure.   
 

 

 

 

 

Figure 1. Coloring using right cosets of the 
subgroups of *732 of Index 2. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Coloring using right cosets of the 
subgroups of *732 of Index 8. 

 
 

 
 
 
 
 
 
 
 
 
 

Figure 3. Coloring using right cosets of the 
subgroups of *732 of Index 9. 



              Guzman & Eclarin.                           On colorings induced by low-index subgroups of hyperbolic triangle 

 
 

92 

 

 

 

Figure 4. Coloring using right cosets of the subgroups 
of *732 of Index 14. 

 

 
Figure 5. Coloring using right cosets of the 

subgroups of *732 of Index 15. 

 
Figure 6. Coloring using right cosets of the 

subgroups of *732 of Index 16. 

 

 
Figure 7. Coloring using right cosets of the 

subgroups of *732 of Index 21. 
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Figure 8. Coloring using right cosets of the subgroups 

of *732 of Index 22 

 

Figure 9. Coloring using right cosets of the subgroups 
of *732 of Index 24 

In investigating the symmetry 
structures of the low-index subgroups of the 
hyperbolic triangle group *732, the 
fundamental region of each subgroup was first 
identified. For each induced coloring, the 
fundamental region is defined as a closed and 
bounded area consisting of one triangle from 
each color class in the tiling. This region 
represents the smallest unit from which the 
entire colored hyperbolic tiling can be 
generated through the action of the subgroup. 
Identifying the fundamental region is essential, 
as it reveals both the geometric and algebraic 
structure underlying the coloring. Figures 1–9 
illustrate examples of right coset colorings 
obtained from selected low-index subgroups of 
*732. In each figure, the application of the 3n 
coloring method assigns colors to the triangles 
corresponding to subgroup elements, ensuring 
that triangles belonging to the same right coset 

share the same color. These figures 
demonstrate how the subgroup structure 
determines the repetition and 
arrangement of colors across the 
hyperbolic plane. In particular, the 
symmetry observed in each figure 
reflects the generators and relations of 
the corresponding subgroup. Right coset 
coloring proved effective in identifying 
and distinguishing low-index subgroups 
of *732. By examining the resulting 
color distributions, the subgroups were 
classified according to their symmetry 
structures using Conway notation. This 
classification highlights how reflectional 
and rotational symmetries are preserved 
or broken depending on subgroup 
properties. Similar observations were 
reported in earlier studies on hyperbolic 
colorings, where subgroup-induced 
partitions were shown to encode 
symmetry information in a visually 
meaningful way (Hernandez, 2003; 
Rigby, 1997). 
The findings of this study are consistent 
with previous work on precise and 
perfect colorings of hyperbolic tilings. 
For instance, Hernandez and Felix 
(2008) demonstrated that subgroup 
actions on {3,n}{3,n} hyperbolic tilings 
lead to well-defined color symmetries, 
while Yao and Hernandez (2012) 
showed that the 3n method produces 
systematic and symmetric colorings. The 
present study extends these results by 
explicitly relating low-index subgroup 
structures of *732 to Conway symmetry 
notation, thereby strengthening the link 
between algebraic classification and 
geometric visualization. Understanding 
subgroup structures and their induced 
coset colorings provides a framework for 
generating complex yet structured 
patterns applicable to textile design, 
architectural ornamentation, and digital 
visualization. Moreover, the clear 
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correspondence between algebraic properties 
and visual outcomes supports the use of 
hyperbolic colorings as educational tools for 
teaching abstract concepts in group theory and 
non-Euclidean geometry. These results also 
open pathways for future research on other 
hyperbolic triangle groups and the 
development of computational tools for 
automated pattern generation. 
 
 

 
 

Figure 10. Fundamental region for the right coset 
coloring of a generator of RQ, PQ subgroup 
of *732 of Index 2. 

 
In the context of hyperbolic 

geometry, Figure 10 illustrates the 
fundamental region for the right coset coloring 
of a subgroup generated by RQPQ within the 
reflection group ∗732 with an index of 2. The 
group ∗732 corresponds to a hyperbolic 
triangle with angles π/7, π/3, and π/2, which 
tiles the hyperbolic plane through repeated 
reflections. Considering the subgroup 
generated by RQ,PQ, the hyperbolic plane is 
partitioned into two distinct cosets, resulting in 
a fundamental region composed of two 
hyperbolic triangles. The right coset coloring 
process assigns a different color to each 
triangle according to its coset membership, 
creating a visual representation that clearly 
reflects the subgroup’s structure within ∗732. 
Notably, although the subgroup divides the 
plane into separate cosets, the overall 
symmetry and tiling patterns are still governed 
by ∗732. This demonstrates that the geometric 

properties of the original reflection 
group continue to shape the 
configuration, highlighting the interplay 
between subgroup algebraic structure 
and hyperbolic plane symmetries.  

 

  
Figure 11. Fundamental region for the right coset 

coloring of a generator of Q, R, 
PRQRQPRQRQRP subgroup of *732 
of Index 8. 

  

 As shown in Figure 11, the 
subgroup of ∗732∗732 generated by the 
elements Q,R,PRQRQPRQRQRP 
provides a detailed view of the 
symmetrical properties of its 
fundamental region. When subjected to 
right coset coloring, this fundamental 
area produces a complex tiling of the 
hyperbolic plane. Notably, the region 
exhibits two distinct rotational 
symmetries: a three-fold rotation around 
points labeled C, allowing rotation by 
multiples of 2π/3, and a seven-fold 
rotation around points labeled A, 
permitting rotation by multiples of π/7. 
In contrast, points 
labeled B and D display only trivial one-
fold symmetry, remaining invariant 
under these rotations. This analysis of 
rotational symmetries is succinctly 
captured by the Conway notation 3**7, 
which encodes the subgroup’s rotational 
characteristics and provides a compact 
summary of its symmetry structure 
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within the hyperbolic plane. The visual 
representation in Figure 11 thus illustrates how 
subgroup-generated tilings reflect both the 
complexity and the inherent symmetry 
of ∗732, offering insights relevant to 
theoretical exploration. 

  
Figure 12. A fundamental region for the right coset 

coloring of a generator Q, P, RQPRQRQRQ 
of subgroup of *732 of Index 9 

  
The subgroup of ∗732 generated by the 

elements Q, P, and RQPRQRQRQ exhibits 
intricate symmetrical patterns in its 
fundamental region, as illustrated in Figure 12. 
The hyperbolic plane is tessellated in this 
region using right coset coloring, revealing the 
subgroup’s structure through distinct rotational 
symmetries. Notably, there is a seven-fold 
rotation around points labeled C, allowing 
rotations by multiples of π/2; a two-fold 
rotation around points BB, permitting rotations 
of π; and points labeled AA′, which 
display trivial one-fold symmetry, remaining 
invariant under transformations. These 
rotational characteristics are succinctly 
captured by the Conway notation **72, which 
encodes the interplay of the subgroup’s 
symmetries in a compact form. The 
visualization demonstrates how low-index 
subgroups of ∗732 can generate complex yet 
structured tilings. 

 

 
Figure 13. Fundamental region for the right coset 

coloring of a generator of Q, R, 
PRQRQPRQRPRQRQRP subgroup 
of *732 Index 15.  

 
For the subgroup 

of ∗732 generated 
by Q,R,PRQRQPRQRPRQRQRP with 
an index of 15, Figure 13 illustrates the 
fundamental region used in the right 
coset coloring. Understanding the 
complex symmetries of hyperbolic 
tilings requires careful analysis of the 
rotational and reflectional symmetries 
present in this basic area, which the 
subgroup analysis highlights. This 
subgroup combines rotations and 
reflections, concisely represented by 
the Conway notation ∗7∗∗2. 
The ∗7 component indicates a seven-
fold rotational symmetry, while 
the ∗∗2 component captures additional 
symmetries such as reflections or glide 
reflections, creating a more intricate 
structure. By examining the right cosets 
and their associated colorings, one can 
visualize how these symmetries 
propagate to tessellate the hyperbolic 
plane, producing a rich and repeating 
pattern. This analysis not only deepens 
understanding of the algebraic and 
geometric properties of hyperbolic 
groups but also illustrates the complexity 
of non-Euclidean symmetry, with 
potential applications in pattern 
generation. 
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Figure 14. A fundamental region for the right coset 

coloring of a generator Q, P, 
RQPRQRPRQRRQRQRQPRQRPQRQRP
RQRRQR subgroup of *732 Index 21. 

 
Figure 14 illustrates the fundamental 

region for the right coset coloring of the 
subgroup generated by Q, P, 
RQPRQRPRQR,RQRQRQPRQRPQRQRPR
QRRQR, within the ∗732 symmetry group, 
which has an index of 21. This subgroup 
exhibits a highly intricate combination of 
reflections and rotations, resulting in complex 
symmetry within the hyperbolic plane. Its 
symmetry is succinctly represented 
using Conway notation ∗∗∗∗2, where the 
multiple asterisks indicate layered reflection 
symmetries and the final 22 denotes a two-fold 
rotational symmetry. Consequently, the 
fundamental region is divided into 21 distinct 
parts, each transformed according to the 
subgroup’s elements. These transformations, 
including reflections (Q), rotations (P), and 
their combinations, produce a richly patterned 
and highly symmetric tiling. Applying right 
coset coloring allows each coset to be assigned 
a distinct color, making the subgroup’s actions 
visible and highlighting how the fundamental 
region maps onto itself under the subgroup 
transformations. This visualization 
demonstrates how the subgroup’s structure 
ensures that the pattern repeats consistently 
and symmetrically across the hyperbolic plane. 
Overall, the analysis underscores the depth of 
hyperbolic geometry, revealing complex 
symmetrical patterns that emerge naturally 
from simple geometric operations. 

 
 

 
 
 
 
 
 
 
 
 
Figure 15. Fundamental region for the right coset 

coloring of a generator of Q, R, 
PRQRQPRQRPQRQRPQRQRP 
subgroup of *732 of Index 22.  

 
Within the ∗732 symmetry 

group, which has an index of 22, Figure 
15 illustrates the fundamental region for 
the right coset coloring of the subgroup 
generated 
by Q,R,PRQRQPRQRPQRQRPQRQR
P. This subgroup comprises a sequence 
of transformations, including rotations, 
reflections, and their combinations, 
producing a complex and highly 
structured pattern on the hyperbolic 
plane. The subgroup’s symmetries are 
succinctly summarized using Conway 
notation ∗∗∗7, where the three asterisks 
indicate multiple layers of reflection 
symmetries, and the 7 denotes a seven-
fold rotational symmetry. As a result, the 
fundamental region is divided into 22 
distinct parts, each transformed 
according to the subgroup elements, 
yielding a highly repetitive and 
symmetric tiling. Applying right coset 
coloring allows each coset to be assigned 
a distinct color, making it visually clear 
how the subgroup’s transformations map 
different sections of the fundamental 
region onto one another. This approach 
not only highlights the preservation and 
propagation of symmetry across the 
hyperbolic plane but also provides an 
intuitive means of understanding the 
intricate patterns by LI subgroups. 
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Figure 16. Fundamental region for the right coset 

coloring of a generator of Q, R, 
PRQRQRPRQRQRPRQRQRP subgroup 
of *732 of Index 24.  

 
Figure 16 illustrates the fundamental 

region for the right coset coloring of the 
subgroup generated 
by Q,R,PRQRQRPRQRQRPRQRQRP within 
the ∗732 symmetry group, which has an index 
of 24. This subgroup consists of a combination 
of reflections and rotations, which are 
succinctly represented by Conway 
notation ∗∗7. The two asterisks indicate two 
layers of reflection symmetries, while the 7 
denotes a seven-fold rotational symmetry, 
resulting in a complex tiling pattern on the 
hyperbolic plane. Applying right coset 
coloring assigns distinct colors to each coset, 
visually highlighting how the subgroup 
elements map different parts of the 
fundamental region onto one another. This 
method ensures that the resulting pattern is 
both consistent and symmetric, repeating 
systematically across the hyperbolic plane.  

 

 
 

Figure 17. Triangle group of *732 
 

In the hyperbolic plane, as 
illustrated in Figure 17, the process of 
reflecting or inverting a given triangle 
across its sides generates a sequence of 
triangles, each derived iteratively from 
the previous one. Within this framework, 
the triangle QRP emerges as a key 
component of the geometric 
construction. Unlike Euclidean triangles, 
the angles of QRP follow hyperbolic 
trigonometric relationships, resulting in 
a sum of angles. Despite this departure 
from Euclidean norms, QRP plays a 
crucial role in understanding the 
topology and tiling patterns of the 
hyperbolic plane. Its placement within 
the iterative reflection process ensures 
that the hyperbolic plane is fully covered 
without gaps or overlaps. Moreover, the 
triangle inherits symmetry both from the 
original generating triangle and from the 
iterative transformations, illustrating the 
interplay between symmetry and 
complexity in hyperbolic geometry. 
Studying triangle QRP thus provides 
insights into the fundamental principles 
of hyperbolic tiling, revealing how non-
Euclidean transformations produce rich, 
repeating patterns and offering a deeper 
understanding of geometric structures 
that differ significantly from those of 
classical Euclidean spaces. 

 
Conclusion 

The significant structural 
information can be obtained from 
colorings induced by right cosets of 
subgroups. While this study focused 
on the hyperbolic triangle group *732, 
future research may extend the 
methodology to other hyperbolic 
triangle groups to compare subgroup 
structures and induced coloring 
behaviors across different group 
parameters. Such comparative 
analyses may contribute to a broader 
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classification of hyperbolic coset colorings. 
Further studies may also apply right coset 
coloring techniques to Euclidean and 
spherical symmetry groups, enabling direct 
comparisons among geometries of different 
curvature and providing deeper insight into 
the relationship between geometry, 
symmetry, and coloring. In addition, 
alternative methods for constructing 
hyperbolic tilings may be explored. Beyond 
Conway’s symmetry notation and 
Rigby’s k-tree constructions, this study 
highlights the feasibility of generating tilings 
by joining the vertices of a subgroup’s 
fundamental region through a single 
complete rotation. Investigating this 
approach further may lead to simpler and 
more efficient tiling constructions. Finally, 
future research may employ advanced 
computational tools by integrating GAP 
with visualization software or developing 
dedicated applications for generating and 
analyzing induced colorings. Such tools 
could enhance pattern visualization, improve 
computational efficiency, and broaden 
applications in design, architecture, and 
mathematics education. 
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