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ABSTRACT

Tilings have been studied in mathematics since ancient times, traditionally within
the framework of Euclidean geometry. In recent years, growing interest has emerged in
non-Euclidean tilings, particularly those in spherical and hyperbolic geometry, where
regular convex polygons generate highly structured and visually striking patterns.
Beyond their theoretical importance, hyperbolic tilings offer meaningful applications in
areas such as artistic design, architectural pattern formation, mathematical education, and
computer-based visualization, where symmetry and color play a central role. This study
investigates colorings induced by low-index subgroups of the hyperbolic triangle group
*732. Specifically, it constructs right coset colorings of the group, identifies the structural
components of its low-index subgroups, and establishes subgroup properties in relation
to their induced colorings. Computational tools were employed using GAP (Groups,
Algorithms, and Programming) to generate low-index subgroups of the triangle group
*732 and to produce the corresponding right coset colorings of the hyperbolic plane. The
results show that tiling the entire hyperbolic plane can be achieved by appropriately
joining the vertices of a tiling’s fundamental region to form a single, complete rotation.
These findings enhance the understanding of symmetry, subgroup structure, and color
organization in hyperbolic geometry. Moreover, the resulting colored tilings provide a
mathematical foundation for creating complex visual patterns that may be adapted for
architectural surfaces, decorative designs, and interactive educational materials. The
study demonstrates how abstract group-theoretic concepts can be translated into visually
meaningful representations, thereby bridging pure mathematics with applied and creative
disciplines. Future research is recommended to explore induced colorings of low-index
subgroups of other hyperbolic triangle groups and related hyperbolic structures.
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guided aesthetic expression. The formal
mathematical study of color symmetry

Across cultures and historical periods, emerged in the early 20th century and
mathematics and art have been deeply was  significantly advanced by
connected through the pursuit of pattern, Shubnikov’s theory of antisymmetry,
symmetry, and structure. From ornamental later extended by Belov and
designs and mosaics to architectural collaborators to multicolor symmetry
decorations, mathematical principles have long  systems. These developments, together
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with the visual impact of Escher’s tessellations,
established color symmetry as an important
area of mathematical inquiry (Amidror, 2009;
Washburn & Crowe, 2004). Much of the
existing literature on color symmetry and
tilings has focused on Euclidean geometry,
where the classification of symmetry groups
and colorings is  well  understood.
However, non-Euclidean geometries,
particularly hyperbolic geometry, possess
fundamentally richer symmetry structures due
to their negative curvature. Hyperbolic tilings
admit infinitely many symmetry types and
allow regular polygons to meet in
configurations impossible in the Euclidean
plane (Coxeter, 1957). Despite this potential,
systematic studies of induced colorings arising
from subgroup structures in hyperbolic triangle
groups remain limited, especially those that
explicitly connect algebraic constructions with
geometric and visual outcomes. This gap
restricts both theoretical progress and the
translation of hyperbolic symmetry into
applied domains. Among hyperbolic symmetry
groups, the hyperbolic triangle
group 732 plays a central role. It is generated
by reflections in the sides of a triangle with
angles n/7, n/3, and n/2, making it one of the
simplest yet most symmetric hyperbolic
triangle groups. Its low-index subgroups yield
a wide variety of nontrivial coset partitions,
making *732 particularly suitable for studying
induced colorings that reflect both algebraic
structure and geometric regularity (Magnus,
Karrass, & Solitar, 1976; Coxeter & Moser,
1980). Despite its importance, detailed
investigations of colorings induced by low-
index subgroups of 732 are scarce,
highlighting the need for focused research in
this area. This study addresses this gap by
investigating colorings induced by low-index
subgroups of the hyperbolic triangle
group 732. Specifically, it aims to obtain right
coset colorings of *732, identify the structural
components of its low-index subgroups, and
establish subgroup properties in relation to
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their ~ induced  colorings  using
computational methods. Hyperbolic
colorings provide new frameworks

for textile and surface design, where
repeating patterns with controlled color
symmetry can inspire innovative fabric
motifs and decorative materials.
In education, visually rich hyperbolic
colorings serve as powerful tools for
teaching abstract concepts in geometry,
group theory, and symmetry, making
advanced mathematics more accessible
through visualization. By bridging
algebraic theory, geometry, and real-
world applications, this research
contributes to both mathematical
understanding and interdisciplinary
innovation.

Methods

This study employed a structural
investigation on colorings induced by
low-index subgroups of hyperbolic
triangle group *732. The methodology
involved two main stages: group
generation and hyperbolic coloring
construction.  First, the hyperbolic
triangle group *732 was defined and
implemented using the software GAP
(Groups, Algorithms, and
Programming). GAP allowed the group
to be represented algebraically with its
standard generators and relations. Using
GAP, the low-index subgroups of *732
were systematically generated, providing
the algebraic structures necessary to
produce coset partitions. Next, the study

constructed right coset colorings
corresponding to these low-index
subgroups. The method involved

applying the 3n method to assign colors
to tiles in the hyperbolic plane based on
the subgroup generators. Each right coset
of a subgroup was associated with a
unique color, so that all tiles
corresponding to elements in the same
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coset shared the same color. This produced a
subgroup-induced coloring of the hyperbolic
tiling, ensuring that the coloring respected the
symmetry properties of the subgroup. Finally,
the properties of the low-index subgroups, such
as index, normality, and generator structure,
were analyzed in relation to their induced
colorings. This approach allowed the study to
link the algebraic properties of subgroups with
the visual and geometric patterns in hyperbolic
tilings, demonstrating how group-theoretic
concepts can be translated into tangible color
structures in the hyperbolic plane.

Results and Discussion

Subgroup Structure of *732

The H? or the hyperbolic plane is a
unique and fascinating model of non-Euclidean
geometry where the parallel postulate of
Euclidean geometry does not hold. Unlike the
familiar flat surfaces, the hyperbolic plane has
a constant negative curvature, creating a
surface that appears saddle-shaped. This
curvature gives rise to intriguing properties and
behaviors, such as the fact that the sum of
angles in a hyperbolic triangle is always less
than 180, and parallel lines can diverge away
from each other. Various models, like the
Poincaré disk and the upper half-plane model,
help visualize and study the properties of the
hyperbolic plane, making it an essential
concept in advanced mathematics, particularly
in the fields of geometry, topology, and
theoretical ~ physics.  Understanding  the
hyperbolic plane provides deep insights into
the structure of space, offering a broader
perspective beyond the conventional Euclidean
framework. A computer program, GAP
(Group, Algorithms and Programming), was
used to list generators of the subgroups of the
group *732 with an index less than or equal to
24. The triangles that represent the elements of
the group's subgroups are colored using 3n
Precise Coloring as shown in Figures 1 to 9.
The components of the low-index subgroups of
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the hyperbolic triangle group *732 were
identified using right coset coloring.
Using Conway notations, the subgroups
were categorized based on their

Figure 2. Coloring us]ng right cosets of the
subgroups of *732 of Index 8.

Figure 3. Coloring uéing right cosets of the
subgroups of *732 of Index 9.
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Figure 5. Coloring using right cosets of the
subgroups of *732 of Index 15.

3!

Figure 6. Coloring using right cosets of the
subgroups of *732 of Index 16.

Figure 7. Coloring using right cosets of the
subgroups of *732 of Index 21.

Figure 4. Coloring using right cosets of the subgroups
of *732 of Index 14.
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Figure 8. Coloring using right cosets of the subgroups
of *732 of Index 22
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Figure 9. Coloring using right cosets of the subgroups
of *732 of Index 24

In investigating the symmetry
structures of the low-index subgroups of the
hyperbolic  triangle group  *732, the
fundamental region of each subgroup was first
identified. For each induced coloring, the
fundamental region is defined as a closed and
bounded area consisting of one triangle from
each color class in the tiling. This region
represents the smallest unit from which the
entire colored hyperbolic tiling can be
generated through the action of the subgroup.
Identifying the fundamental region is essential,
as it reveals both the geometric and algebraic
structure underlying the coloring. Figures 1-9
illustrate examples of right coset colorings
obtained from selected low-index subgroups of
*732. In each figure, the application of the 3n
coloring method assigns colors to the triangles
corresponding to subgroup elements, ensuring
that triangles belonging to the same right coset
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share the same color. These figures
demonstrate how the subgroup structure

determines  the  repetition  and
arrangement of colors across the
hyperbolic plane. In particular, the

symmetry observed in each figure
reflects the generators and relations of
the corresponding subgroup. Right coset
coloring proved effective in identifying
and distinguishing low-index subgroups
of *732. By examining the resulting
color distributions, the subgroups were
classified according to their symmetry
structures using Conway notation. This
classification highlights how reflectional
and rotational symmetries are preserved
or broken depending on subgroup
properties. Similar observations were
reported in earlier studies on hyperbolic
colorings, where subgroup-induced
partitions were shown to encode
symmetry information in a visually
meaningful way (Hernandez, 2003;
Rigby, 1997).

The findings of this study are consistent
with previous work on precise and
perfect colorings of hyperbolic tilings.
For instance, Hernandez and Felix
(2008) demonstrated that subgroup
actions on {3,n} {3,n} hyperbolic tilings
lead to well-defined color symmetries,
while Yao and Hernandez (2012)
showed that the 3n method produces
systematic and symmetric colorings. The
present study extends these results by
explicitly relating low-index subgroup
structures of *732 to Conway symmetry
notation, thereby strengthening the link
between algebraic classification and
geometric visualization. Understanding
subgroup structures and their induced
coset colorings provides a framework for
generating complex yet structured
patterns applicable to textile design,
architectural ornamentation, and digital
visualization. Moreover, the clear
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correspondence between algebraic properties
and visual outcomes supports the use of
hyperbolic colorings as educational tools for
teaching abstract concepts in group theory and
non-Euclidean geometry. These results also
open pathways for future research on other
hyperbolic  triangle groups and the
development of computational tools for
automated pattern generation.

Figure 10. Fundamental region for the right coset
coloring of a generator of RQ, PQ subgroup
of *732 of Index 2.

In the context of hyperbolic
geometry, Figure 10 illustrates the
fundamental region for the right coset coloring
of a subgroup generated by RQPQ within the
reflection group *732 with an index of 2. The
group *732 corresponds to a hyperbolic
triangle with angles n/7, /3, and n/2, which
tiles the hyperbolic plane through repeated
reflections.  Considering the  subgroup
generated by RQ,PQ, the hyperbolic plane is
partitioned into two distinct cosets, resulting in
a fundamental region composed of two
hyperbolic triangles. The right coset coloring
process assigns a different color to each
triangle according to its coset membership,
creating a visual representation that clearly
reflects the subgroup’s structure within *732.
Notably, although the subgroup divides the
plane into separate cosets, the overall
symmetry and tiling patterns are still governed
by x732. This demonstrates that the geometric
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properties of the original reflection
group continue to shape the
configuration, highlighting the interplay
between subgroup algebraic structure
and hyperbolic plane symmetries.

Figure 11. Fundamental region for the right coset
coloring of a generator of Q, R,
PRQRQPRQRQRP subgroup of *732
of Index 8.

As shown in Figure 11, the
subgroup of *732%732 generated by the
elements Q,R,PRQRQPRQRQRP
provides a detailed view of the
symmetrical properties of its
fundamental region. When subjected to
right coset coloring, this fundamental
area produces a complex tiling of the
hyperbolic plane. Notably, the region
exhibits two distinct rotational
symmetries: a three-fold rotation around
points labeled C, allowing rotation by
multiples of 2n/3, and a seven-fold
rotation around points labeled A,
permitting rotation by multiples of n/7.
In contrast, points
labeled B and D display only trivial one-
fold symmetry, remaining invariant
under these rotations. This analysis of
rotational symmetries is succinctly
captured by the Conway notation 3**7,
which encodes the subgroup’s rotational
characteristics and provides a compact
summary of its symmetry structure
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within the hyperbolic plane. The visual
representation in Figure 11 thus illustrates how
subgroup-generated tilings reflect both the
complexity and the inherent symmetry
of ¥732, offering insights relevant to
theoretical exploration.

Figure 12. A fundamental region for the right coset
coloring of a generator Q, P, RQPRQRQRQ
of subgroup of *732 of Index 9

The subgroup of *732 generated by the
elements Q, P, and RQPRQRQRQ exhibits
intricate ~ symmetrical  patterns in its
fundamental region, as illustrated in Figure 12.
The hyperbolic plane is tessellated in this
region using right coset coloring, revealing the
subgroup’s structure through distinct rotational
symmetries. Notably, there is a seven-fold
rotation around points labeled C, allowing
rotations by multiples of w/2; atwo-fold
rotation around points BB, permitting rotations
ofmt, and points labeled AA’, which
display trivial one-fold symmetry, remaining
invariant under transformations. These
rotational  characteristics are succinctly
captured by the Conway notation **72, which
encodes the interplay of the subgroup’s
symmetries in a compact form. The
visualization demonstrates how low-index
subgroups of *732 can generate complex yet
structured tilings.
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Figure 13. Fundamental region for the right coset
coloring of a generator of Q, R,
PRQRQPRQRPRQRQRP subgroup
of *732 Index 15.

For the

of x732 generated
by Q,R,PRQRQPRQRPRQRQRP with
an index of 15, Figure 13 illustrates the
fundamental region used in the right
coset coloring. Understanding the
complex symmetries of hyperbolic
tilings requires careful analysis of the
rotational and reflectional symmetries
present in this basic area, which the
subgroup analysis highlights. This
subgroup  combines rotations  and
reflections, concisely represented by
the Conway notation *7**2.
The *7 component indicates a seven-
fold rotational symmetry, while
the **2 component captures additional
symmetries such as reflections or glide
reflections, creating a more intricate
structure. By examining the right cosets
and their associated colorings, one can
visualize  how these symmetries
propagate to tessellate the hyperbolic
plane, producing a rich and repeating
pattern. This analysis not only deepens
understanding of the algebraic and
geometric properties of hyperbolic
groups but also illustrates the complexity
of non-Euclidean symmetry, with
potential  applications in  pattern
generation.

subgroup
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Figure 14. A fundamental region for the right coset
coloring of a generator Q, P,
RQPRQRPRQRRQRQRQPRQRPQRQRP
RQRRQR subgroup of *732 Index 21.

Figure 14 illustrates the fundamental
region for the right coset coloring of the
subgroup generated by Q, P,
RQPRQRPRQR,RQRQRQPRQRPQRQRPR
QRRQR, within the *732 symmetry group,
which has an index of 21. This subgroup
exhibits a highly intricate combination of
reflections and rotations, resulting in complex
symmetry within the hyperbolic plane. Its
symmetry is  succinctly  represented
using Conway notation ***x2, where the
multiple asterisks indicate layered reflection
symmetries and the final 22 denotes a two-fold
rotational symmetry. Consequently, the
fundamental region is divided into 21 distinct
parts, each transformed according to the
subgroup’s elements. These transformations,
including reflections (Q), rotations (P), and
their combinations, produce a richly patterned
and highly symmetric tiling. Applying right
coset coloring allows each coset to be assigned
a distinct color, making the subgroup’s actions
visible and highlighting how the fundamental
region maps onto itself under the subgroup
transformations. This visualization
demonstrates how the subgroup’s structure
ensures that the pattern repeats consistently
and symmetrically across the hyperbolic plane.
Overall, the analysis underscores the depth of
hyperbolic geometry, revealing complex
symmetrical patterns that emerge naturally
from simple geometric operations.
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Figure 15. Fundamental region for the right coset
coloring of a generator of Q, R,
PRQRQPRQRPQRQRPQRQRP
subgroup of *732 of Index 22.

Within the *732 symmetry
group, which has an index of 22, Figure
15 illustrates the fundamental region for
the right coset coloring of the subgroup
generated
by Q,R,PRQRQPRQRPQRQRPQRQR
P. This subgroup comprises a sequence
of transformations, including rotations,
reflections, and their combinations,
producing a complex and highly
structured pattern on the hyperbolic
plane. The subgroup’s symmetries are
succinctly summarized using Conway
notation ***7, where the three asterisks
indicate multiple layers of reflection
symmetries, and the 7 denotes a seven-
fold rotational symmetry. As a result, the
fundamental region is divided into 22

distinct  parts, each transformed
according to the subgroup elements,
yielding a highly repetitive and

symmetric tiling. Applying right coset
coloring allows each coset to be assigned
a distinct color, making it visually clear
how the subgroup’s transformations map
different sections of the fundamental
region onto one another. This approach
not only highlights the preservation and
propagation of symmetry across the
hyperbolic plane but also provides an
intuitive means of understanding the
intricate patterns by LI subgroups.
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Fundamental region for the right coset
coloring of a generator of Q, R,
PRQRQRPRQRQRPRQRQRP subgroup
of *732 of Index 24.

Figure 16.

Figure 16 illustrates the fundamental
region for the right coset coloring of the
subgroup generated
by Q,R,PRQRQRPRQRQRPRQRQRP within
the *732 symmetry group, which has an index
of 24. This subgroup consists of a combination
of reflections and rotations, which are
succinctly represented by Conway
notation *x7. The two asterisks indicate two
layers of reflection symmetries, while the 7
denotes a seven-fold rotational symmetry,
resulting in a complex tiling pattern on the
hyperbolic  plane. Applying right coset
coloring assigns distinct colors to each coset,
visually highlighting how the subgroup
elements map different parts of the
fundamental region onto one another. This
method ensures that the resulting pattern is
both consistent and symmetric, repeating
systematically across the hyperbolic plane.

Figure 17. Triangle group of *732
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In the hyperbolic plane, as
illustrated in Figure 17, the process of
reflecting or inverting a given triangle
across its sides generates a sequence of
triangles, each derived iteratively from
the previous one. Within this framework,
the triangle QRP emerges as a key
component of  the geometric
construction. Unlike Euclidean triangles,
the angles of QRP follow hyperbolic
trigonometric relationships, resulting in
a sum of angles. Despite this departure
from Euclidean norms, QRP plays a
crucial role in understanding the
topology and tiling patterns of the
hyperbolic plane. Its placement within
the iterative reflection process ensures
that the hyperbolic plane is fully covered
without gaps or overlaps. Moreover, the
triangle inherits symmetry both from the
original generating triangle and from the
iterative transformations, illustrating the

interplay ~ between symmetry  and
complexity in  hyperbolic  geometry.
Studying triangle QRP thus provides

insights into the fundamental principles
of hyperbolic tiling, revealing how non-
Euclidean transformations produce rich,
repeating patterns and offering a deeper
understanding of geometric structures
that differ significantly from those of
classical Euclidean spaces.

Conclusion

The significant  structural
information can be obtained from
colorings induced by right cosets of
subgroups. While this study focused
on the hyperbolic triangle group *732,
future research may extend the
methodology  to other  hyperbolic
triangle groups to compare subgroup

structures and induced coloring
behaviors across different group
parameters. Such comparative

analyses may contribute to a broader
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classification of hyperbolic coset colorings.
Further studies may also apply right coset
coloring techniques to Euclidean and
spherical symmetry groups, enabling direct
comparisons among geometries of different
curvature and providing deeper insight into

the relationship between  geometry,
symmetry, and coloring. In addition,
alternative  methods for constructing

hyperbolic tilings may be explored. Beyond
Conway’s  symmetry  notation  and
Rigby’s k-tree  constructions, this study
highlights the feasibility of generating tilings
by joining the vertices of a subgroup’s
fundamental region through a single
complete rotation. Investigating  this
approach further may lead to simpler and
more efficient tiling constructions. Finally,
future research may employ advanced
computational tools by integrating GAP
with visualization software or developing
dedicated applications for generating and
analyzing induced colorings. Such tools
could enhance pattern visualization, improve
computational efficiency, and broaden
applications in design, architecture, and
mathematics education.
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